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ABSTRACT 
The past twenty years have seen an explosion in the realm of infrared detection 

technology fueled by improvements in III-V semiconductor technology and by new 

semiconductor growth methods.  One of the fastest growing areas of this research 

involves the use of bandgap engineering in order to create artificial quantum wells for use 

in Quantum Well Infrared Photodetectors (QWIPs).  QWIPs have an advantage over 

other infrared detectors such as Mercury Cadmium Telluride (MCT) because they have 

larger bandgaps and are therefore stronger and cheaper to manufacture.  This thesis 

introduces one method of “multi-color” detection through the use of an asymmetric 

quantum well structure in which all energy transitions are possible.  The QWIP structure 

in this thesis was designed to detect a laser wavelength of 1.06 µm and a wavelength in 

the 8-10 µm atmospheric window.   

The relevance of a detector that is tuned to these wavelengths is that it can be used 

on military aircraft as a laser spot tracker and an infrared imager providing much greater 

accuracy and dependability than older systems. 
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I. INTRODUCTION 

A. QUANTUM WELL INFRARED PHOTODETECTOR (QWIP) 

The past twenty years have seen an explosion in the realm of infrared detection 

technology fueled by improvements in III-V compound semiconductor technology and by 

new semiconductor growth methods such as molecular beam epitaxy (MBE) and metal 

organic chemical vapor deposition (MOCVD).  These technologies have made it possible 

to create artificially structured superlattices for use in novel device applications.  The 

QWIPs operate by absorbing incoming photons and exciting carriers from the ground 

state to an excited state, which is known as intersubband transitions and is shown 

schematically in Figure 1.1.  These excited carriers, or photoelectrons, can then be used 

to create a photocurrent through the application of an external bias.   

ω

Eg

E1

E2

 

Figure 1.1 Diagram showing quantum well structure, energy levels ( )1 2,E E , energy 

gap ( )gE and photon absorption ( )ω . 
 

QWIPs have an advantage over other infrared detecting materials such as 

HgCdTe (MCT), which is shown in Figure 1.2, because they have much larger bandgaps 

and therefore are stronger and easier to manufacture.  QWIPs also have an advantage 
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over MCT devices due to the fact that MCT devices utilize interband transitions, which 

limit the ability of the detector to be “tuned” to a specific wavelength.  These advantages 

have made QWIPs the focus of recent infrared detection research. 

ω Eg

 

Figure 1.2 Diagram of HgCdTe bandstructure showing the energy gap and the photon 
absorption across the gap. 

 

The idea of using semiconductors to create quantum wells was first proposed by 

Esaki and Tsu (1969) and since then many studies have been done on artificial quantum 

wells, which has led to a detailed understanding of energy-level spacing, intersubband 

and interband selection rules, line shapes and intersubband absorption.  The earliest 

working QWIP was designed using GaAs/AlGaAs and was based on bound-to-bound 

transitions (Levine et al. 1987).  The responsivity of this first device was extremely low 

because the photoelectrons had to tunnel through large barriers and therefore the device 

had to operate under a CO2 laser.  This low responsivity led to the use of bound-to-

continuum transitions, which was first proposed by Coon et al. (1984).  The first bound-

to-continuum QWIP was demonstrated to have a much higher responsivity and a larger 

spectral width (Hasnain et al., 1989), but had a small peak absorbance due to the 

continuum of states above the well. 
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Further advances in QWIP design have led to structures that are based on bound-

to-quasi-continuum transitions (Levine et al., 1991), bound-to-miniband transitions (Yu 

et al., 1991) and bound-to-quasi-bound transitions (Gunapala et al., 1996).  These more 

recent configurations have shown good detector performance due to the fact that in all of 

these cases the ground state electrons do not flow in response to an external bias while 

the photoelectrons can create a photocurrent with the use of a relatively small bias.  

Multiple structural optimizations have also been made that improve QWIP performance.  

Increasing the barrier size has reduced the tunneling current by many orders of magnitude 

(Levine et al., 1991), lowering the excited state from the continuum into the quasi-bound 

region has been shown to reduce the dark current from thermionic emission by a factor of 

~12 at 70K (Gunapala et al., 1996) and adding a grating on top of the device to increase 

the electric field polarization normal to the quantum wells in order to increase the 

absorption strength (Karunasiri et al., 1995).  All of these QWIPs have been shown to 

work well as infrared detectors, but they are limited to the detection of a narrow band of 

wavelengths.  This limitation in QWIP technology has recently been overcome through 

the design of “multicolor”, or multiple-wavelength, QWIPs. 

Multicolor QWIPs are important because the peak wavelength emitted by an 

object shifts as its temperature changes.  This shift in wavelength can cause performance 

limitations in single color QWIPs due to the peak radiation wavelength being far 

removed from the peak detection wavelength of the device, which will limit the 

discrimination ability of the detector.  One way in which to improve this limitation is to 

design the QWIP to be sensitive to several wavelengths so that the emissivity changes of 

an object can be detected. 

Some of the earliest methods of creating multicolor QWIPs were to build several 

stacks of square quantum wells, each with a different peak detection wavelength (Köck et 

al., 1992, Gravé et al., 1992, Liu et al., 1993).  The multicolor response of these stacks 

was achieved by attaching a contact to each stack (Köck et al., 1992) or by controlling 

the external bias across the device to activate each stack sequentially (Gravé et al., 1992, 

Liu et al., 1993).  Another method of creating a multicolor device was to use bandgap 

engineering technology to create an asymmetric quantum well, where the transitions from 

the ground state to several excited states are allowed and occur at differing wavelengths 
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(Berger et al., 1992, Martinet et al., 1992, and Chiang et al., 1996).  The main advantage 

of using this system is that it requires only one set of quantum wells to achieve multicolor 

detection, but the downside is that in order to get the photoelectrons from the lower 

excited states out of the well a large bias has to be applied to the device, which increases 

the tunneling current.  One method of overcoming this large tunneling current is to create 

a superlattice in which an asymmetric well is surrounded by multiple square wells so that 

the first miniband is aligned with the lowest excited energy level in the asymmetric well 

(Ting et al., 1997).  The advantage of this system is that photoelectrons in the lowest 

excited energy level have a higher mobility due to the presence of the miniband, and 

therefore the responsivity of this structure is greatly improved, but the complexity of the 

design makes fabrication more difficult. 

 

B.  PURPOSE OF THIS THESIS 

The purpose of this thesis is to design an asymmetric quantum well capable of 

detecting a laser wavelength of 1.06 µm and a middle infrared wavelength in the 8-10 µm 

range through the use of both intersubband and interband transitions.  The scope of this 

research will cover several aspects of semiconductor technology including theoretical 

study of band structure, intersubband and interband transition selection rules, 

intersubband absorption, structural design of the quantum well, and modeling of the 

effects of an external bias on the quantum well. 

The solution to the Schrödinger equation in a QWIP with finite potential heights 

cannot be solved analytically, but must be calculated using techniques such as the transfer 

matrix method (Vassel et al., 1983, Lui et al., 1986, Wang et al., 1989).  The transfer 

matrix method utilizes the continuity and boundary conditions of the wavefunctions to 

obtain the energy eigenvalues and wavefunctions numerically.  These values are then 

used to determine the absorption spectrum of a device, which is useful in optimizing the 

device performance.   

In order to achieve two-color detection, it is necessary to design a quantum well 

structure having two energy transitions corresponding to the two detection wavelengths.  

In a square quantum well, this is difficult because intersubband transitions can only occur 
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between states with opposite parity according to the selection rules.  In addition, the 

transition probability drops rapidly as the quantum number of the excited state increases.  

Introducing an asymmetry into the quantum structure and thereby altering the parity of 

the wavefunctions and allowing all transitions to occur can overcome this restriction 

(Martinet et al., 1992).  The quantum well structure designed in this thesis makes use of 

both intersubband and interband transitions to achieve multicolor detection.  This method 

differs from those studied in the past, which utilized only intersubband transitions to 

obtain multicolor detection (Köck et al., 1992, Gravé et al., 1992, Liu et al., 1993, Ting 

et al. 1997).  The advantages of the method used in this thesis are that the use of 

interband transitions allows for much shorter wavelength detection while the longer 

wavelengths can be detected using intersubband transitions.  Furthermore, the asymmetry 

of the quantum well allows the excitation of electrons from the ground state to the first 

excited state in the conduction band.  This allows for the extraction of the photoexcited 

electrons to occur at a lower bias, which reduces the dark current dramatically. 

 

C.  MILITARY RELEVANCE 

A multicolor QWIP is relevant in the military today because it can be used as both 

an infrared imager and a laser spot tracker for use in laser-guided weapons delivery.  The 

quantum well design utilized in this thesis is capable of detecting wavelengths as low as 1 

µm and could easily be tuned for use with any combat laser designator wavelengths.  In 

addition to the 1.06 µm laser wavelength, this quantum well is designed to 

simultaneously detect infrared radiation in the 8-10 µm range, supporting infrared 

imagery.   

The applications of infrared and laser detection technology in the military are 

legion.  Specific benefits of QWIP detector devices are immediately evident in the 

following case:  Military airborne weapon systems often utilize a FLIR (Forward 

Looking InfraRed) for target acquisition and tracking and a laser target designator/range 

finder that are often co-located in a single weapons pod (e.g., LANTIRN) (Hewish et al., 

2002).  Some aircraft, such as the F-18, also employ a laser spot tracker, which is located 

in a separate, externally mounted pod.  The addition of the separate laser spot tracker 
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(LST) provides the pilot with a visual laser designation cue, which is especially useful 

when designation occurs from an offboard source (e.g., Special Ops, “Buddy lasing”, 

etc.).  The LST affords much greater accuracy and confidence in ordinance delivery 

while expanding employment options.  However, boresight errors are inherent in a multi-

pod system and degradations due to misalignment are common.  Another disadvantage is 

the loss of an external weapons station for carriage of a sensor. 

The quantum well detector design proposed in this thesis will provide an 

advantage to both airborne systems, which will lead to better accuracy and lethality.  In a 

system such as LANTIRN, it will provide laser spot tracking capability where one 

currently does not exist.  For aircraft such as the F-18, the introduction of a laser spot 

tracker into the weapons pod will not only eliminate boresight errors but also free up the 

weapons station often occupied by the laser spot tracker, resulting in lethality and 

survivability benefits. 
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II.  QUANTUM WELL STRUCTURE AND INTERSUBBAND 

ABSORPTION 

A. INTRODUCTION 

Intersubband absorption is an important aspect in the design of an infrared 

detector and has been studied extensively using multi-band methods (Shik, 1992, Peng et 

al., 1995, Flatté et al., 1995) and also using band-mixing (Peng et al., 1995).  These 

methods for studying absorption are very sophisticated and may not be suitable for use in 

designing QWIPs.  When quantum well structures are formed using large bandgap 

materials, the envelope function approximation can be used instead to provide a more 

simple approach to determining design parameters.  In the envelope function 

approximation, the Schrödinger equation is solved by using the transfer matrix method, 

which has been discussed by several researchers (Vassel et al., 1983, Lui et al., 1986, 

Wang et al., 1989) and has become the method most commonly used to model quantum 

well technology today.  This chapter will cover the transfer matrix method, band 

structure, selection rules for energy transitions and intersubband absorption. 

 

B. TRANSFER MATRIX METHOD 

The Schrödinger equation inside an infinite square potential well, which is shown 

in Figure 2.1, is given by: 

 
2 2

22 n n n
e

E
m z

ψ ψ∂− =
∂

 (2.1) 

where em  is the mass of the electron,  is the reduced Planck’s constant, z  is the growth 

direction and  and n nEψ  are the wavefunction and energy eigenvalues, respectively.  

Finding the solution to (2.1) is relatively easy due to the conditions that the wave 

functions must go to zero at the edges of the well and that the electron must be within the 

well.  In this case the quantized energy levels have the values (West et al., 1985): 
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2 2 2

2  for n = 1,2,3...
2n

e

nE
m L
π=  (2.2) 

where L  is the width of the well.  The wavefunctions in this case are given by 

 2( ) sinn
nzz

L L
πψ  =  
 

 (2.3) 

where the 2
L

 term is known as the normalization factor and comes from the condition 

that 

 2| ( ) | 1.n z dzψ
∞

−∞

=∫  (2.4) 

V(z)

E1

E2

E3

z
0 L

∞∞

 
Figure 2.1 Schematic drawing of an infinite square quantum well with energy levels. 

 

In the case of an infinite potential well the approach used above is relatively 

simple, but it becomes tedious and difficult to solve when multiple layers are added as in 

the case of a finite step quantum well (Yuh et al., 1989).  In this section the transfer 

matrix method will be discussed and shown to be able to handle potential wells with 

many layers. 

In a heterostructure, the quantum well is formed by combining semiconductor 

materials that have differing bandgaps.  The simplest form of this is a square quantum 
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well in which material A is surrounded by material B, which has a higher bandgap and 

which is thick enough not to allow for tunneling of the confined electron.  In this case the 

electrons will be confined to the smaller bandgap region and using the envelope function 

approximation (also known as the effective mass approximation) the energy eigenvalues 

can be derived (Kane, 1957). 

The envelope function approximation makes use of two assumptions; (1) that the 

potential difference between material A and B at the interface is localized (i.e. step 

function) and (2) the interface potential does not mix the band-edge wavefunctions, but 

shifts them.  With these assumptions the wavefunctions take the form (Coon et al., 1984) 

 ( ) ( )( , )( ) i x yu e zψ= k ρΨ r r i  (2.5) 

where ( )u r  is the bandedge cell periodic function, z  is the crystal growth direction, 

( , )i x ye ⋅k ρ  is the plane-wave perpendicular to z, ( , )x yρ  is the direction vector in the xy 

plane, k  is the transverse wave vector, and ( )zψ  is the envelope wave function that 

satisfies the Schrödinger equation 

 
2 2

* 2 ( ) ( ) ( )
2 ( )

V z z E z
m z z

ψ ψ ∂− + = ∂ 
 (2.6) 

where *( )m z  is the effective mass in the direction of growth and ( )V z  is the potential 

height. 

The transfer matrix method utilizes the piece-wise constant potential ( )V z  to 

simplify much of the calculations of the envelope function approximation so that the 

wave functions in each layer are given as a linear combination of a right-traveling wave, 
nik ze , and a left-traveling wave, nik ze− , where nk  is the wave vector in the nth region (Note 

that nk  is real in the layer where ( )nE V z>  and imaginary otherwise).  Using this fact 

and applying the boundary conditions 

 

1

1
* *

1

( ) ( )

( ) ( )1 1

n n n n

n n n n

n n n n

z z

z z
m z m z

ψ ψ

ψ ψ

+

+

+

=

∂ ∂=
∂ ∂

 (2.7) 
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we can mathematically determine the energy eigenvalues.  

m* 1

m*2

m*3

m* n-1 m*n

m*n+1

V(z)

z
z1 z 2 z3 zn-1 zn zn+1  

Figure 2.2 Arbitrary potential well of a multi-layered quantum well structure. 

  

Figure 2.2 shows an arbitrary quantum well structure in which the thickness of 

each layer is given by 1n n na z z+= −  and *
nm  is the effective mass of the electron in each 

region.  The wavefunctions for each region are given by 

      ( )       n = 0,1,2,...,n,n+1n nik z ik z
n n nz A e B eψ −= +  (2.8) 

where nA  and nB  are the coefficients of the left and right traveling wave in the nth region 

and the wave vector in the nth region is defined as 

 
*

2

2 ( )n
n n

mk E V= −  (2.9) 

where nV  is the potential height in the nth region.  By applying the boundary conditions a 

relationship can be developed between the coefficients of the wavefunctions in 

neighboring regions. 

 1

1

          n = 1,2,...,N-1n n
n

n n

A A
B B

+

+

   
=   

   
M  (2.10) 

where nM  is the transfer matrix for the interface at nz  
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( ) ( )
( ) ( )

1 1

1 1

( ) ( )

( ) ( )

1 1

1 1

1
2

n n

n n

n n n nn n

n n n nn n

i k k z i k k z

n i k k z i k k z

e e

e e

χ χ

χ χ

+ +

+ +

− − +

+ − −

 
 
 
 
  

+ −

− +
=M  (2.11) 

 
*

1
*

1

n n
n

n n

k m
k m

χ +

+

=  (2.12) 

From this formula a relationship can further be found between the first and the last region 

in the quantum structure 

 1 1 11 12 1
1 2 1

1 1 21 22 1

...N
N

N

A A A m m A
B B B m m B−
         

= = =         
        

M M M M  (2.13) 

where M  is the composite transfer matrix for the entire structure and is given by 

 11 12
1 2 1

21 22

...N

m m
m m−
 

= =  
 

M M M M . (2.14) 

If the potential heights in the two outer regions are higher than those in between them 

there will be bound energy states.  For these bound states the wavefunctions must go to 

zero at ±∞  and this requirement means that 1 0A =  and 0NB = : 

 11 12

21 22 1

0
0

N m mA
m m B
    

=     
     

, (2.15) 

which is satisfied when  

 22 ( ) 0m E =  (2.16) 

Equation (2.16) is then tantamount to an eigenvalue condition on the allowed energies.  

We wrote a program to plot 22 ( )m E  versus E and locate the zeroes of the function, which 

determine the energy eigenvalues.  The zeroes of 22 ( )m E  are found by searching for 

values of E  such that [ ]22 22( ) ( ) 0m E m E E+ ∆ ≤ ; in this way we know that the root lies 

between E  and E E+ ∆ .  The accuracy of the eigenvalue is determined by E∆ ; for most 

cases a value of 1 E meV∆ =  was used.   
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An example of the transfer matrix method for a square quantum well is shown in 

the next section, where the energy levels for the quantum well shown in Figure 2.3 are 

derived. 

V(z)

z
0 a

m*1

k1

m*2

k2

m*3=m*1

k3=k1

V1 V3=V1

V2 = 0

 
Figure 2.3 Schematic diagram of a finite square well with parameters used for 

calculation. 

 

The composite transfer matrix M  for this quantum well can be written as 

 
( ) ( )

( ) ( )

1 12 2

1 12 2

2 3 2 3

2 3 2 3

( ) ( )

2 1
( ) ( )

1 1

1 1

1 11
4 1 1

i k k a i k k a

i k k a i k k a

e e

e e

χ χ

χ χ

χ χ

χ χ

− − +

+ − −

   + +
   
   

+ +     

+ −
= =

− +
M M M  (2.17) 

where 
*
1

3 1 12

2 ( )mk k i i V Eκ= = = −  and 
*
2

2 2

2mk E= , so that, 

 ( )( ) ( )( )2 1 2 1
2 3 2 3( ) ( )

22
1( ) 1 1 1 1
4

i k k a i k k am E e eχ χ χ χ+ − − 
  

= − − + + +  (2.18) 

The bound states occur when 22 ( )m E =0.  Figure 2.4 shows a plot of 22 ( )m E  as a function 

of energy. 
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Figure 2.4 Plot of 22 ( )m E  versus E for 0.53 0.47/InP In Ga As  well with a = 150 Å.  

 

Although only the conduction band was considered in this case, the valence band follows 

the same procedure and the energy eigenvalues in the valence band can be solved for 

with the same program keeping in mind that the effective masses and potential heights 

will differ in the valence band.  Figure 2.5 shows the conduction band energy levels and 

wavefunctions of the quantum well in Figure 2.4. 
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Figure 2.5 Conduction band energy levels and wavefunctions of the quantum well in 

Figure 2.4. 
 

C. SELECTION RULES FOR OPTICAL TRANSITIONS 

In a quantum well structure made of semiconductors, the wavefunctions consist of 

envelope and Bloch functions.  This means that transitions between both Bloch and 

envelope states are allowed within the structure.  Transitions between Bloch states 

correspond to interband transitions, while transitions between envelope states correspond 

to intersubband transitions.  The transition rate for either interband or intersubband 

transitions is given as (Coon et al., 1984) 

 ( )2

,

2 | | | | ,f p i f i
i f

W V E Eπ δ ω= < Ψ Ψ > − −∑  (2.19) 

where  and i fE E  are the initial and final energy states and ω  is the incoming photon 

energy.  The initial and final wavefunctions in the transition rate are of the form of 

Equation (2.5), 
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( , )

( , )

( ) ( )

( ) ( )

i x y
i i i

i x y
f f f

u e z

u e z

ψ

ψ

⋅

⋅

Ψ =

Ψ =

k ρ

k ρ

r

r
. (2.20) 

The interaction potential pV  is defined in the dipole approximation as (Coon et al., 1984) 

 
1/2

*
0

ˆ
2p

r

e IV
n cm ε ω

 
  
 

= ⋅e p  (2.21) 

where I  is the incident photon flux, c  is the speed of light, e  is the electron charge, 0ε  is 

the electric permittivity, rn  is the index of refraction, ω  is the angular frequency of the 

incoming photon, ê  is the unit vector of the electric polarization of the incident light and 

p  is the momentum operator.  The integral in the transition rate is known as the transition 

matrix element, which is defined as 

 

( , ) ( , )

( , ) ( , )

( , ) ( , )

| | ( ) ( ) | | ( ) ( )

( ) | | ( ) ( ) | ( )

( ) | | ( ) ( ) | ( ) .

f i

f i

f i

i x y i x y
p pi i iif f f f

i x y i x y
p i if f

i x y i x y
p i if f

V u z e V u z e

u e V u e z z

z e V z e u u

ψ ψ

ψ ψ

ψ ψ

⋅ ⋅

⋅ ⋅

⋅ ⋅

=< Ψ Ψ >=< >

=< >< >

+ < >< >

k ρ k ρ

k ρ k ρ

k ρ k ρ

M r r

r r

r r

(2.22) 

For the case of interband transitions ( i vψ ψ= , f cψ ψ= ) the second term in the transition 

matrix element is zero due to the orthogonality of the Bloch functions in the conduction 

and valence bands.  On the other hand, the first term is zero for intersubband transitions 

( 1iψ ψ= , 2fψ ψ= ) due to the fact that the Hamiltonian used to obtain fψ  and iψ  is 

Hermitian.  Taking this into account, the transition matrix elements for both transitions 

are as follows 

 
12 2 1 2 1

( ) | | ( ) ( ) | ( )

( ) | | ( ) ( ) | ( )

vc c p i c v

p

u V u z z

z V z u u

ψ ψ

ψ ψ

=< >< >

=< >< >

M r r

M r r
 (2.23) 

where the ( , )i x ye ⋅k ρ  term, giving a delta function for the conservation of the xy plane 

momentum, has been dropped.  It is easy to see that the only way to obtain non-zero 
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transition matrix elements is for both ( ) | ( ) 0c vz zψ ψ< >≠  and 1 2( ) | | ( ) 0pz V zψ ψ< >≠ .  

For a square quantum well this implies that only even-to-even or odd-to-odd interband 

transitions are possible, while for intersubband transitions, pV z
∂∝ ∂  and only even-to-

odd or odd-to-even transitions are possible as shown in figure 2.6.    

Eg

Vv

Vc

E2

E1

Ev

z

 
Figure 2.6 Schematic diagram of a square quantum well showing allowed and 

forbidden (X) transitions. 
 

If a step is added within the well in Figure 2.6 then the wavefunctions are no 

longer only even or odd, but a combination of the two.  In this case the transition matrix 

elements will be non-zero for all transitions as is shown in figure 2.7. 
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Eg

Vc

E2

E1

Ev

z

Vv  
Figure 2.7 Schematic diagram of a step quantum well showing that all transitions are 

allowed. 
 

This step is vital to this thesis because it allows for the excitation of electrons from 

the 1 and vE E  states to the 2E  state to be collected as photocurrent.  The optimization of 

transition wavelengths and the transition probability are discussed in the next section. 

 

D. INTERSUBBAND ABSORPTION 

Absorption is an important factor in the design of a multicolor infrared detector 

because it is one of the only measurable quantities of a sample.  The absorption 

coefficient is proportional to the amount of incident light that is absorbed in the sample 

and therefore should be high in order to achieve an efficient detector.  This thesis will 

include absorption from both bound-to-bound and bound-to-continuum transitions, which 

are shown in figure 2.8. 
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ω

E1

(a)

ω

E1

(b)

E2

 
Figure 2.8 Diagram of (a) bound-to-continuum and (b) bound-to-bound transitions. 

 

For the case of bound-to-bound transitions there is only one initial state and one 

final state, but there are dN N LA=  electrons occupied in the initial state due to freedom 

of motion of the electrons in the xy plane, where N  is the number of electrons in the 

initial state, dN  is the doping concentration in electrons per volume, L  is the length of 

the well and A  is the area of the well.  Since all of these electrons have the same energy 

along the growth direction the sum in Equation (2.19) is over just one initial and final 

state multiplied by N .  The delta function in Equation (2.19) can be approximated due to 

finite lifetime of the excited state by the normalized Lorentzian function given as (Yariv, 

1997, pp. 162) 

 ( )
( )

( ) ( )22

1 2

2f i

g
E E

ω
π ω

Γ
=

Γ− − +
 (2.24) 

where Γ  is the full width half maximum value of the electron in the state fE .  Using the 

interaction potential from Equation (2.21) and the momentum operator 

 ( )i x y z
∂ ∂ ∂= − + +∂ ∂ ∂p  (2.25) 

the transition rate can be found as 

 2( ) | | | | ( )B B
B B f i

C dW IAL g
dz

ψ ψ ω
ω
−

− = < >  (2.26) 
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where | | | |f p i f p iV Vψ ψ< Ψ Ψ >≈< > for intersubband transitions and  

 
( )

2 3

2*
0

.d
B B

r

N eC
m n cε

− =  (2.27) 

For the case of bound-to-continuum transitions there are still N  initial states with 

energy iE , but now there is also a continuum of final energy states and the summation 

over these final states amounts to replacing the delta function with the joint density of 

states ( )fEρ , which is given by (Choi, 1997, pp. 131-133) 

 
*

2

21( )
2 ( )

b
f

f b

mE
E V

ρ
π

=
−

 (2.28) 

where *
bm  is the barrier effective mass and bV  is the barrier potential height.  Therefore 

the transition rate for bound-to-continuum states is defined as 

 
*

2
2

2( ) | | | |
( ) ( )

b
B C B C f i

f b

m dW C IAL
E V dz

ψ ψ
ω− −= < >

−
 (2.29) 

where 

 
( )

2 2

2*
0

.
2

d
B C

r

N eC
m n cε

− =  (2.30) 

The absorption coefficient ( )α ω  is defined as 

 
( )number of transitions per unit volume and time( )

incident photon flux

W
AL
I

α ω = =  (2.31) 

and the absorption coefficient for both bound-to-bound and bound-to-continuum 

transitions can be derived. 

 

2

*
2

2

( ) | | | | ( )

2( ) | | | |
( ) ( )

B B
B B f i

b
B C B C f i

f b

C d g
dz

m dC
E V dz

α ω ψ ψ ω
ω

α ω ψ ψ
ω

−
−

− −

= < >

= < >
−

 (2.32) 
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An example of the absorption coefficient for bound-to-bound and bound-to-continuum 

transitions is shown in figures 2.9 and 2.10.  The sharp peak in figure 2.9 results from the 

bound-to-bound transitions occurring whenever the incident photon has energy equal to 

2 1E E− , whereas the shape of the absorption curve in figure 2.10 is relatively broad due 

to the continuum of energies above the well.  The amplitude of the bound-to-continuum 

absorption coefficient decreases as the photon energy increases because the density of 

states decreases the further above the well you go. 

 
Figure 2.9 Bound-to-bound absorption curve for (In0.53Ga0.47As)0.15(InP)0.85/ 

In0.53Ga0.47As /(In0.53Ga0.47As)0.45(InP)0.55 with a=25 Å and b=44 Å with no external bias 
and 10 meVΓ = . 
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Figure 2.10 Bound-to-continuum absorption curve for the quantum well in Figure 2.9 

with no external bias. 

 

E. SUMMARY 

In this chapter the transfer matrix method was developed and used to calculate the 

energy levels and wavefunctions in a quantum well.  Selection rules for interband and 

intersubband transitions and their importance in detector design were discussed and the 

absorption coefficient for both bound-to-bound and bound-to-continuum transitions was 

derived theoretically using Fermi’s golden rule (2.19).  In the next chapter, we will 

discuss some of the design aspects that are considered when designing a multicolor 

QWIP and how the addition of an external bias will effect these considerations. 
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III. DESIGN OF A QW STRUCTURE FOR INFRARED 
DETECTION 

A.  INTRODUCTION 

As discussed in Chapter II, surrounding a low-bandgap material with a high-

bandgap material will form a quantum well.  The choice of which materials to use is 

important as it will affect the transition wavelengths as well as the absorption coefficient, 

and therefore the efficiency of the detector.  Some of the factors to consider in the choice 

of materials to use are bandgap, lattice constant, and what wavelengths are to be detected.  

During this thesis multiple materials were tried in order to optimize the structure so that it 

would detect a wavelength of 1.06 µm and a wavelength of 8-10 µm.  No matter which 

materials were used in the structure, their bandgaps and effective masses were 

determined by Vegard’s Law with a bowing parameter to take into account non-

uniformities of alloying (Singh, 1993, pp. 185). 

 

1

1

* * *

(1 ) (1 )

1 1

x x

x x

A B A B
g g g AB

A B A B

E xE x E x x C

x x
m m m

−

−

= + − + −

 −= + 
 

 (3.1) 

where x  is the molar percentage of material A and ABC  is the experimentally determined 

bowing parameter.  An example of how the composite energy gaps, at the -pointΓ , and 

relative effective masses change with molar percentage is shown in Figures 3.1 and 3.2 

where the energy gaps and effective masses for each material are given in Table 3.1 

(Note that the bowing parameter is not considered in these cases). 
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Material Energy Gap (eV) Relative effective mass ( )*
em m  

AlAs 2.671 0.15 

GaAs 1.424 0.067 

InAs 0.36 0.028 

Table 3.1 Energy gap and relative effective mass values for specific materials. From: 
Singh, 1993, pp. 184-185 

 

 
Figure 3.1 Diagram of Energy Gap vs. Molar percentage for 

1 1 and Gax x x xAl Ga As In As− −  at the -point.Γ  
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Figure 3.2 Diagram of Relative effective mass vs. Molar percentage for 

1 1 and x x x xAl Ga As Ga In As− −  
 

The potential heights in the conduction and valence band depend on the difference 

in energy gaps between two regions and are not the same, as might be expected, but differ 

so that the conduction band potential height is larger than the valence band.  This 

difference is difficult to predict theoretically and can only be determined for each 

material experimentally, however, when modeling a quantum well structure it is assumed 

that to a good approximation the potential heights in the conduction and valence bands is 

given as 

 
( )

( )

11

11

0.6

0.4

y yx x

y yx x

A BA B
C g g

A BA B
V g g

V E E

V E E

−−

−−

= −

= −
. (3.2)  

In early QWIP research, studies focused on quantum well structures that utilized 

bound-to-bound transitions (Levine et al. 1987).  In a bound-to-bound QWIP the 
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electrons in the lowest state are excited by incoming photons into the excited state and 

then tunnel through the barrier under an external bias to form a photocurrent as is shown 

in figure 3.3. 

•

•

•

•

•
•

•
•

•
•

•
•

(a) (b)
 

Figure 3.3 Schematic Diagram showing (a) bound-to-continuum and (b) bound-to-
bound electron transport. 

 

The barrier thickness was designed to be large enough to prevent tunneling from the 

lowest state (typically about 500 Å); however, this barrier thickness reduced the 

photoresponse due to the reduction in tunneling probability of the photoelectrons.  

Another problem with these early designs was that the photoresponse spectrum was 

relatively narrow due to there being only two states and was not practical for infrared 

imaging.  These problems ushered in the second generation of QWIPs, which used 

bound-to-continuum transitions (Hasnain et al., 1989).  In these structures, electrons in 

the ground state are excited into the continuum where they contribute to the photocurrent 

without tunneling (Figure 3.3) and therefore the barrier thickness has less bearing on the 

photocurrent.  Due to the continuum of states and the multiple transitions that can occur, 

the photoresponse spectrum was much wider than in the bound-to-bound design, but the 

absorption coefficient was much smaller due to the low density of states above the well.  

It is easy to see that there is a trade-off between having good transport of photoelectrons 

and strong absorption and that both are important in the design of a QWIP.  In the 

following sections, these factors will be used to motivate the design of a quantum well 

structure for two-color infrared detection. 
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B. STEP QUANTUM WELL STRUCTURE FOR DUAL COLOR 
DETECTION 

In the past, attempts have been made to detect multiple “colors”, or wavelengths, 

with an infrared imager by using square quantum wells (Köck et al., 1992, Gravé et al., 

1992, Liu et al., 1993), but as was shown in section 2.3, transition selection rules prohibit 

the transition from the first valence level to the second conduction level and therefore that 

wavelength cannot be detected.  This implies that only one wavelength of light can be 

detected with a square quantum well. One method used to detect more than one 

wavelength of light using square quantum wells was to stack multiple wells on top of 

each other and hold each well responsible for detecting one specific wavelength of light 

(Köck et al., 1992, Gravé et al., 1992, Liu et al., 1993).  This type of structure is easy to 

design, but very difficult to fabricate due to the need for multiple contacts at each well.  

Recently researchers have been exploring the use of asymmetric, or step, quantum wells 

(Ting et al., 1997) to detect multiple wavelengths. 

In a step quantum well, the symmetry of the wavefunctions is broken and 

transitions that were forbidden in a square quantum well can occur.  For this thesis, the 

optimized design of the step quantum well is to have two energy levels in the conduction 

band, one above and below the step, which account for the middle infrared wavelength, 

and one energy level in the valence band, below the step, that accounts for the 1.06 µm 

transition as illustrated in figure 3.4. The second energy level in the conduction band is 

designed to be as near the top of the quantum well as possible in order to get a good 

photocurrent with very little bias. 
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Figure 3.4 Schematic diagram of the ideal quantum well for this thesis. 
 

The application of the bias will cause the quantum well to “slant” and will force 

the second energy level into the continuum allowing the photoexcited electrons to be 

extracted without tunneling through the barrier.  The energy levels will be affected by the 

bias and therefore the peak detection wavelengths will shift.  The asymmetry of the 

quantum well will give rise to a linear Stark shift which is approximately given by 
2

eFb  

where e  is the electron charge, F is the applied electric field in volts per meter and b  is 

the length of the step in the quantum well.  The accurate shift in detection wavelength is 

important in the design since it is necessary to apply an external bias to a device in order 

to extract the photocurrent.  Due to the necessity of using an external bias it becomes 

important to be able to model how the peak detection wavelengths will change in order to 

optimize the QWIP structure, in particular for the 1.06 µm wavelength.  The next section 

will introduce a transfer matrix method for a quantum well under a bias and this method 

will be used to model the change in transition wavelengths due to an external bias. 
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C. TRANSFER MATRIX METHOD UNDER AN APPLIED BIAS 

When a quantum well structure is subjected to an applied bias the potential well 

will tilt in the direction opposite the electric field and therefore the potential of an 

electron in the quantum well is given as 

 ( ) nV z V eFz= −  (3.3) 

where nV  is the potential height of the well, e is the electron charge, F  is the 

applied electric field in volts per meter and z  is the direction of growth.  An example of 

the effect of an external bias on a square quantum well structure is shown in Figure 3.5 

V(z)

Vn

L

z

F

 
Figure 3.5 Diagram of a square quantum well under an external bias. 

 
Substituting Equation (3.3) into the Schrödinger equation 

 
2 2

* 2 ( ) ( ) ( )
2 n n n

n

V z z E z
m z

ψ ψ
 ∂− + = ∂ 

 (3.4) 

the following formula can be derived 

 
2 *

2 2

( ) 2 ( ) ( )n n
n n

z m e Fz z
z

ψ η ψ∂ = − −
∂

 (3.5) 

where 
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 n
n

E V
e

η −=  (3.6) 

and where nV  is the potential height in the nth region.  Equation (3.5) can further be 

simplified using the following coordinate transformation 

 ( ) n
n

Fzz ηρ
β

− −=  (3.7) 

and the result is of the form of the Airy differential equation 

 
2

2

( ) ( ) ( )
( )
n

n n
n

z z z
z

ψ ρ ψ
ρ

∂ =
∂

 (3.8) 

with 

 
1
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*2 n

F
m e

β
 

=  
 

. (3.9) 

The solution to Equation (3.8) is a linear combination of Airy functions given as 

(Vatannia et al., 1996) 

 ( ) ( ( )) ( ( ))n n n n nz A Ai z B Bi zψ ρ ρ= +  (3.10) 

where Ai  and Bi  are Airy functions of the first and second kind, respectively.  By 

substituting Equation (3.10) into the boundary conditions given by Equation (2.7) a 

relationship can be developed between the coefficients of the wavefunctions in each 

region. 

 1

1

 for 1, 2,3,... 1n n

n n

A A
n N

B B
+

+

   
= = −   

   
nM  (3.11) 

Furthermore, a relationship can be developed between the coefficients in the first and last 

region. 

 1 11 12
1

21 221

N N N

N N N

A A AA m m
m mB B B B−

        
= = =        

        
1 2 3 NM M M ...M M  (3.12) 
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where 

 
1 1 1 1

1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

n n n n n n n n n n

n n n n n n n n n n

Ai Bi Ai Bi Bi Bi Bi Bi

Ai Ai Ai Ai Ai Bi Ai Bi

α α σ α α α α σ α α
π

σ α α α α σ α α α α

+ + + +

+ + + +

′ ′ ′ ′− − 
 =
 ′ ′ ′ ′− − 

nM (3.13) 

and 

 

1
* 3

2

1
* 3

1
1 1 1 12

2 ( ) ( )

2 ( ) ( )

n
n n n n n n

n
n n n n n n

m eF z z

m eF z z

α η γ η

α η γ η+
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= − − = − − 
 

 
= − − = − − 
 

 (3.14) 

 
*

1
*

1

n n
n

n n

m
m

γσ
γ
+

+

 
=  
 

. (3.15) 

The primes in Equation (3.13) represent the derivatives of the Airy functions and the 

factor of π  comes from the fact that ( ) 1( ) ( ) ( ) ( )n n n nAi Bi Ai Biα α α α
π

′ ′− = .  In the case of 

bound states, the wavefunctions must decay to zero as z → ±∞ .  This constraint forces 

1 0B =  since the second order Airy function, ( )nBi α , tends to ∞  as z → −∞ .  Similarly, 

0NA =  since ( )nAi α  tends to ∞  as z → ∞ .  These conditions cause Equation (3.12) to 

take the form 

 1 11 12

21 22

0
0 N

A m m
Bm m
    

=     
     

 (3.16) 

and, just like the derivation of the unbiased transfer matrix method, the requirement for 

eigen states is 

 22 ( ) 0m E = . (3.17) 

We wrote a program to find and plot 22 ( )m E  versus E  and find the energy levels when 

Equation (3.17) is satisfied.  Figure 3.6 shows 22 ( )m E  as a function of energy and figure 

3.7 shows the calculated energy levels and wavefunctions for the conduction band of a 
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step quantum well under an external bias.  The parameters of the quantum well were 

taken from a previously published work (Karunasiri et al., 1990) so that the results found 

using this program could be compared with experimental data. 

 
Figure 3.6 Plot of 22 ( )m E  vs. E for 0.44 0.56 0.18 0.82/ /Al Ga As GaAs Al Ga As  well with a=60 Å 

and b=90 Å and an external electric field, 3.5extF V mµ= . 
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Figure 3.7 The first three conduction band energy levels and wavefunctions of the 

quantum well in figure 3.6. 
 

The eigen states and wavefunctions of the step well formed in the valence band 

can be obtained using the same approach as above with corresponding potential heights 

and effective masses.  Figure 3.8 shows the calculated energy levels and wavefunctions 

in the valence band for heavy holes. 
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Figure 3.8 Valence band energies and wavefunctions for the step well in Figure 3.6. 

 

The introduction of the external bias will cause a shift in the energy levels of the 

asymmetric quantum well and therefore, the absorption coefficient defined by Equation 

(2.32) will also change.  For the QWIP design used in this thesis, the addition of the bias 

will force the excited state, which was very near the top of the well, into the continuum 

so that only the bound-to-continuum absorption coefficient is considered when a bias is 

introduced.  Figure 3.9 demonstrates how the external bias will affect the peak detection 

wavelength. 
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Figure 3.9 Plot of the bound-to-continuum absorption vs. wavelength for the 

0.53 0.47 0.15 0.85 0.53 0.47 0.53 0.47 0.55 0.45( ) ( ) / /( ) ( )In Ga As InP In Ga As In Ga As InP  well with a = 25 Å and b = 
44 Å and with a bias of 0 V/µm and 1.5 V/µm. 

 

This section has introduced a transfer matrix method for a quantum well structure 

under an external bias.  This method was used to calculate the energy levels, 

wavefunctions and absorption coefficient for a quantum well, which is useful in 

optimizing detector design.  The next section will compare the output of the computer 

model designed in this thesis with experimental data in order to tell the accuracy of the 

computer model. 

 

D. COMPARISON WITH EXPERIMENTAL DATA 

The quantum well structure that the computer model was compared to came from 

a paper written by Karunasiri et al. (1990).  This paper utilized a 

0.44 0.56 0.18 0.82/ /Al Ga As GaAs Al Ga As  step quantum well with a = 60 Å and b = 90 Å.  This 

structure has four energy levels in its conduction band, but the paper focused on the 
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bound-to-bound absorption from the 1-2 and 1-3 transitions due to the minute absorption 

strength of the 1-4 transition.  Figure 3.10 shows the energy levels of the conduction band 

and Table 3.2 shows the effective masses and energy gaps used in the computer model. 

 
Figure 3.10 Energy levels of the 0.44 0.56 0.18 0.82/ /Al Ga As GaAs Al Ga As  well with a = 60Å 

and b = 90Å. 
 

Layer *m  (kg) gE  (eV) 
Al0.44Ga0.56As 0.1082 em  1.9727 
GaAs 0.067 em  1.424 
Al0.18Ga0.82As 0.0794 em  1.6485 

 
Table 3.2 Parameters used in the quantum well in Figure 3.10 

 

Since this is a step quantum well all energy transitions are allowed and only the bound-

to-bound absorption is considered in this analysis to compare with the experimental data.  

Figure 3.11 shows the calculated absorption coefficient for the 1-2 and 2-3 energy 

transitions under both positive and negative external bias. 
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Figure 3.11 Bound-to-bound absorption curves for 1-2 and 1-3 transitions of the 

quantum well in Figure 4.6 with 15meVΓ= . 
 

Since the experimental data is measured in absorbance, the absorption coefficient is 

converted to absorbance using the following relation 

 
2

6

(log ) ( ) (sin (17 ))(log ) ( )
(2.56*10 )(log ) ( )

Absorbance x e W e
cm e

α ω α ω
α ω−

= =
=

 (3.18) 

where W is the width of the absorbing material and the 2sin (17 )  term comes from the 

polarization of the light hitting the device at the Brewster angle ( 73θ = ).  Using this 

equation the absorbance can be found for both transitions and is shown in Figure 3.12. 
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Figure 3.12 Bound-to-bound absorbance curves for 1-2 and 1-3 transitions of the 

quantum well in Figure 4.6 with 15meVΓ= . 
 

This Figure can be compared with the absorbance curves obtained experimentally, which 

is shown in Figure 3.13 (Note that the absorbance data in the Figure is plotted in 

decreasing order of wavenumber). 
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Figure 3.13 Bound-to-bound absorbance curves obtained experimentally using the 

quantum well in Figure 4.6.  From:  Karunasiri et al., 1990. 
 

Comparing Figures 3.12 and 3.13 it can easily be seen that the values for the absorbance 

obtained from our model and those obtained experimentally are very close and that the 

computer model used in this thesis is a good approximation to the real world. 

 

E. SUMMARY 

This chapter introduced some of the parameters that affect the design of a QWIP 

and a method for detecting multiple infrared wavelengths using an asymmetric quantum 

well design.  The optimum design characteristics used in this thesis were also presented 

along with a motivation for modeling the effects of an external bias on a quantum well 

structure.  A transfer matrix method utilizing Airy functions was derived to model the 

effects of an external bias and this method was used to show how the peak detection 

wavelength shifts due to the bias.  The data obtained using our computer model was then 

compared to experimental data and shown to be a good approximation to real life, 
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granting greater confidence in any information obtained using the model.  The next 

chapter introduces the optimum design of the QWIP structure used in this thesis along 

with an analysis of how it will react to an external bias. 
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IV. DESIGN PARAMETERS OF THE TWO-COLOR DETECTOR 

A. INTRODUCTION 

As was mentioned in chapter III, many different material systems were considered 

in designing the asymmetric well used in this thesis.  At first, a 

1 1/ /x x y yAl Ga As GaAs Al Ga As− −  step well was considered due to the abundance of 

experimental data on these two materials and because they are lattice matched, which 

would make them much easier to grow.  This structure could be designed to detect the 

middle infrared wavelength (MIRW), but could not detect the 1.06 µm wavelength due to 

its large bandgap.  This prompted the use of materials with smaller bandgaps, which 

could be identified by using Figure 4.1 (Tu et al., 1992, pp. 158). 

 
Figure 4.1 Diagram of bandgap vs. Lattice constant for different materials. 
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The next -basedGaAs  quantum well design that was tried consisted of 

1 1/ /x x y yGaAs In Ga As In Ga As− −  and could be designed to detect both the MIRW and 1.06 

µm wavelengths, but not at the same time.  The reason that both wavelengths could not 

be detected at the same time using these materials was that in order to detect the 1.06 µm 

wavelength the energy gaps had to be widened, but this caused the two conduction band 

energy levels to become closely spaced, which pushed the MIRW outside of the 8-10 µm 

design window.  Another problem with the design of this quantum well was that if the 

molar percentage of Indium became large there was a significant lattice mismatch 

between the two materials, which would introduce dislocations into the sample.    In 

order to lessen the lattice mismatch, a quantum well consisting of 

1 1/ /x x y yInP In Ga As In Ga As− −  was designed because the energy gap of InP and GaAs are 

about the same and because the two materials have much closer lattice constants to 

provide for easier growth.  This quantum well structure could also be designed to detect 

the MIRW and 1.06 µm wavelengths, but the problem remained that both wavelengths 

could not be detected at the same time because the energy gap of InP was still too large.  

Following Figure 4.1 this left only one choice of possible materials for the final design: 

the quaternary InGaAsP  and 0.53 0.47In Ga As .  These materials provided the advantage of 

being lattice-matched and also by varying the amount of InP  in the quaternary the 

bandgap could be brought down to the point where both wavelengths could be detected.  

The following section will discuss the quantum well that was designed using these 

materials and will show the theoretical results for the absorption with and without an 

external bias. 

 

B. OPTIMUM QUANTUM WELL DESIGN 

One of the problems with using the quaternary material in the design of the 

quantum well was that very little experimental data was readily available and no 

theoretical data could be found. However, a paper written by Vurgaftman et al. (2001) 

provided all of the necessary experimental data not only for the quaternary material, but 

also for every other material that was used throughout this thesis.  Using the values from 
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this paper, an optimized quantum well was designed with the following layer structure: 

0.53 0.47 0.15 0.85 0.53 0.47 0.53 0.47 0.55 0.45( ) ( ) / /( ) ( )In Ga As InP In Ga As In Ga As InP  with a thickness of 

the well of 25 Å and of the step of 44 Å.   Figure 4.2 shows the optimized quantum well 

structure, energy levels, and transition wavelengths and Table 4.1 shows the values of the 

effective masses and energy gaps in each layer of the optimum design. 

 
Figure 4.2 Optimized quantum well structure and energy levels with no external bias. 
 

Layer *m  (kg) *
hhm  (kg) gE  (eV) 

(In0.53Ga0.47As)0.15(InP)0.85 0.0676 em  0.4905 em  1.3159 
In0.53Ga0.47As 0.0365 em  0.3403 em  0.8161 
(In0.53Ga0.47As)0.55(InP)0.45 0.0519 em  0.4242 em  1.1181 

 
Table 4.1 Parameters used to design the final quantum well structure used in this 

thesis. *
hhm  is the heavy-hole effective mass and em  is the electron mass. 

 

It is important to mention that the values for the energy gaps found in Table 4.1 are the 

values when the temperature, 0T K= .  The reason for choosing these values over the 
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room temperature ( 290T K= ) values is that in order to limit the dark current of the 

device under operating conditions it must be cooled down to 77T K≤ .  The difference in 

the energy gaps and the energy levels of this structure at 0T K=  and 77T K=  is small 

so that for design purposes it was assumed that the device is operating at 0T K= .  

Figures 4.3 and 4.4 show the effects of external bias on the quantum well structure and 

energy levels. 

 
Figure 4.3 Optimized quantum well structure and energy levels with 1.5F V mext µ= . 
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Figure 4.4 Optimized quantum well structure and energy levels with 3F V mext µ= . 

 

It is easy to see in these Figures that the second energy level has indeed been pushed up 

into the continuum where it can easily create a photocurrent.   

The main factor to consider in the evaluation of this design is how the application 

of the external bias will affect the quantum well’s ability to detect the designated 

wavelengths of 1.06 µm and 8-10 µm band.  Figure 4.5 shows a comparison between the 

absorption coefficient for the unbiased well where bound-to-bound absorption occurs and 

for the case when 1.5extF V mµ=  where bound-to-continuum absorption occurs. 
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Figure 4.5 Comparison of the absorption coefficients for the unbiased well (bound-
to-bound) and the biased well (bound-to-continuum) with 1.5F V mext µ= and 10meVΓ= . 

 

This Figure demonstrates the relative strengths of the bound-to-bound and bound-to-

continuum absorption coefficients.  The bound-to-bound absorption coefficient has a 

narrow spectral width compared to the broad bound-to-continuum spectrum as illustrated 

in Figure 4.6 using the normalized absorption coefficients.   
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Figure 4.6 Comparison of the normalized absorption coefficients for the unbiased 

well (bound-to-bound) and the biased well (bound-to-continuum) with 1.5F V mext µ= and 
10meVΓ= . 

 

Although the shift from bound-to-bound to bound-to-continuum absorption has dropped 

the relative height of the absorption spectrum it has not dropped to a point where it would 

be difficult to measure.  The broadening of the absorption spectrum has also ensured that 

the quantum well structure will still be able to detect the MIRW reasonably well and as 

long as the external bias is not too large, the QWIP should operate as designed.  It is 

important to mention that this thesis has not considered interband absorption due to the 

difficulties in defining and integrating the Bloch functions in each material, but it can 

safely be assumed that the interband absorption curve will follow the same pattern that 

the intersubband absorption curve did and therefore the quantum well structure will also 

detect the 1.06 µm wavelength reasonably well.   
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C. SUMMARY 

This chapter introduced the optimized design of the quantum well structure used 

in this thesis along with some of the reasons why the materials used in this quantum well 

were chosen over other materials.  It was also shown that the optimized quantum well 

structure would operate as a multicolor detector for the specified wavelengths with or 

without an external bias. 
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V. CONCLUSION 

An asymmetric quantum well device capable of achieving two-color detection 

through the use of bandgap engineering was demonstrated and the properties of this 

device were derived and discussed.  The ability of the optimized device to detect both 

short infrared wavelengths and middle infrared wavelengths could be useful as a dual 

infrared imager/laser spot tracker in military aircraft for the use of accurate ordinance 

delivery. 

The detailed quantum well structure and eigen energy levels of the device were 

derived through the use of a transfer matrix method with effective mass approximation 

and the intersubband absorption spectrum for both bound-to-bound and bound-to-

continuum transitions was derived and utilized to optimize the device parameters.  A 

transfer matrix method using Airy functions was derived to model the effects of an 

external bias on the device and the output of this computer model was compared to 

experimental data and shown to be a good approximation to real life.  The reasoning for 

the choice of the materials used in the optimized design was discussed including a 

discussion of why other materials that were tried did not work for the chosen 

wavelengths. 

This thesis has shown that an efficient laser spot tracker/infrared imager quantum 

well device is plausible and further study is warranted.  A sample of the optimized design 

should be grown and tested in order to compare experimental results with the theory 

presented in this thesis.  
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APPENDIX. [PROGRAMMING NOTES AND SELECTED 
PROGRAMS] 

Since many of the calculations presented in this thesis involved a substantial 

amount of matrix operations the choice of Matlab to create the computer model was 

manifest.  Matlab proved to be an extremely efficient and reliable tool for deriving the 

energy levels, wavefunctions and absorption spectra for the unbiased quantum well 

devices.  However, the use of Matlab to model the biased quantum well had some 

limitations due to the Airy functions.  Matlab contains the numerical values of the Airy 

functions, but as expected, these values become unmanageable when the argument in the 

Airy functions becomes very large or small.  An attempt was made to manually insert the 

asymptotic versions of the Airy functions into the program to overcome this limitation, 

but this too proved to be unmanageable.  Therefore the program written to model the 

quantum well under an applied field is limited in its scope.  The following is a selection 

of programs used in this thesis to obtain the theoretical data discussed above. 
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%This program is titled aqw_InGaAsP% 
%Created: January 2002 
%Author: Kevin Lantz 
 
 
%This is a program to find the energy levels in a two-step quantum well. 
 
%There are three interfaces in this well and therefore will be three transfer matrices to calculate. 
%The basic design of the well is as follows:   
                %Region 1 (-Inf->0)-->InGaAsP  

                              %Region 2 (0->a)-->InGaAs 
                %Region 3 (a->L)-->InGaAsP 
                %Region 4 (L->Inf)-->InGaAsP 
 
clc      
global E 
% inputs-------------------------------------------------------- 
X1 = input('Percentage of InGaAs (0-1) in region 1         '); 
X2 = input('Percentage of In (0-1) in region 2                   ');              
X3 = input('Percentage of InGaAs (0-1) in region 3         '); 
  
width1 = Inf;   %Extends from -Infinity to 0; 
width2 = input('Length of 0->a in angstroms:                   ');    
width3 = input('Length of a->L in angstroms:                   ');    
width4 = Inf;   %Extends from L to Infinity; 
 
%Energy gap values in each region----------------------------- 
eg1 = 1.4236*(1-X1) + 0.81612*X1 - 0.13*(X1*(1-X1));      
eg2 = 1.519*(1-X2) + 0.417*X2 - 0.477*(X2*(1-X2)); 
eg3 = 1.4236*(1-X3) + 0.81612*X3 - 0.13*(X3*(1-X3)); 
eg4 = 1.4236*(1-X1) + 0.81612*X1 - 0.13*(X1*(1-X1));  
 
%Potential Heights in Conduction Band-------------------------- 
V1 = 0.6*(eg1 - eg2);       
V2 = 0;                     %Choose the origin as the bottom left corner of region 2. 
V3 = 0.6*(eg3 - eg2); 
V4 = V1; 
 
%----------------------------------------------------------------------------- 
y = 1;      %Initial value of y to correct the logic of the later condition; 
a =1; 
%constants------------------------------------------------------- 
hbar = 1.055e-34;    %hbar in ev*m 
m0 = 9.11e-31;        %Rest mass of the electron in eV 
q = 1.602e-19; 
 
L1 = width1*1e-10;      %Change input of angstroms->meters 
L2 = width2*1e-10; 
L3 = (width2+width3)*1e-10; 
L4 = width4*1e-10; 
 
%Effective electron mass in each region-------------------------- 
m_eff1 = 1/((X1/(0.0365*m0)) + ((1-X1)/(0.0795*m0))); 
m_eff2 = 1/((X2/(0.026*m0)) + ((1-X2)/(0.067*m0))); 
m_eff3 = 1/((X3/(0.0365*m0)) + ((1-X3)/(0.0795*m0))); 
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m_eff4 = 1/((X1/(0.0365*m0)) + ((1-X1)/(0.0795*m0))); 
 
for E = 0.0001:0.0001:(V1-0.0001);   
 
%Determine the values of k---------------------------------------- 
 
k1 = sqrt((2*m_eff1*(E - V1)*q)/(hbar^2)); 
k2 = sqrt((2*m_eff2*(E - V2)*q)/(hbar^2)); 
k3 = sqrt((2*m_eff3*(E - V3)*q)/(hbar^2)); 
k4 = sqrt((2*m_eff4*(E - V4)*q)/(hbar^2)); 
 
%Determine the transfer matrices---------------------------------- 
 
x1 = 0;     %Interface Locations;  
x2 = L2; 
x3 = L3; 
     
m11 = ((1/2)*((1 + ((k1*m_eff2)/(k2*m_eff1)))*exp(i*(x1*(k1 - k2)))));        
m12 = ((1/2)*((1 - ((k1*m_eff2)/(k2*m_eff1)))*exp(-(i*(x1*(k1 + k2)))))); 
m21 = ((1/2)*((1 - ((k1*m_eff2)/(k2*m_eff1)))*exp(i*(x1*(k1 + k2))))); 
m22 = ((1/2)*((1 + ((k1*m_eff2)/(k2*m_eff1)))*exp(-(i*(x1*(k1 - k2)))))); 
 
m_11 = ((1/2)*((1 + ((k2*m_eff3)/(k3*m_eff2)))*exp(i*(x2*(k2 - k3)))));       
m_12 = ((1/2)*((1 - ((k2*m_eff3)/(k3*m_eff2)))*exp(-(i*(x2*(k2 + k3)))))); 
m_21 = ((1/2)*((1 - ((k2*m_eff3)/(k3*m_eff2)))*exp(i*(x2*(k2 + k3))))); 
m_22 = ((1/2)*((1 + ((k2*m_eff3)/(k3*m_eff2)))*exp(-(i*(x2*(k2 - k3)))))); 
 
m_11_ = ((1/2)*((1 + ((k3*m_eff4)/(k4*m_eff3)))*exp(i*(x3*(k3 - k4)))));        
m_12_ = ((1/2)*((1 - ((k3*m_eff4)/(k4*m_eff3)))*exp(-(i*(x3*(k3 + k4)))))); 
m_21_ = ((1/2)*((1 - ((k3*m_eff4)/(k4*m_eff3)))*exp(i*(x3*(k3 + k4))))); 
m_22_ = ((1/2)*((1 + ((k3*m_eff4)/(k4*m_eff3)))*exp(-(i*(x3*(k3 - k4)))))); 
 
M1 = [m11,m12;m21,m22]; 
M2 = [m_11,m_12;m_21,m_22]; 
M3 = [m_11_,m_12_;m_21_,m_22_]; 
 
%Now we find an expression for M22------------------------------------ 
 
B = M3*M2*M1; 
J22 = B(2,2); 
 
%Program used to calculate and plot the wavefunctions------------------ 
 
Psi_aqw 
 
%Define the function y------------------------------------------------- 
 
z = y; 
y = real(J22); 
 
%Define condition for energy eigenvalues------------------------------- 
 
if z.*y < 0 
        
    disp(E) 
    Eout(a) = E;    %Stores energy levels into an array 
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    a = a+1; 
     
    %plotting the wavefunctions---------------------------- 
    hold on 
    plot((X*1e10),((psi1/20)+E)) 
    plot((Y*1e10),((psi2/20)+E)) 
    plot((Z*1e10),((psi3/20)+E)) 
    plot((T*1e10),((psi4/20)+E)) 
     
end 
 
end 
 
%This program finds the energy levels in the Valence Band 
 
valence_InGaAsP 
 
%Drawing the finite well------------------------------------------------ 
 
well2   %This program draws the Conduction band well      
 

%---------------------End of aqw_InGaAsP------------------------------ 
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%This program is titled Psi_aqw 
%Created: January 2002 
%Author: Kevin Lantz 

 
%This is a program that is used to find the wavefunctions in each region of the quantum well. 
%The bulk of this program is trying to find the normalization constant b1, which determines the  
%normalized wavefunctions and the coefficients A1,B1,A2,B2,A3,B3,A4,B4... 
 
deltax = 1e-10;  
 
%All of the coefficients can be written in terms of B1 
 
B1 = 1; %dummy variable...actual B1 is B1*b1 == b1 
A2 = m12*B1; 
B2 = m22*B1; 
A3 = (m_11*m12 + m_12*m22)*B1; 
B3 = (m_21*m12 + m_22*m22)*B1; 
A4 = (m_11_*(m_11*m12 + m_12*m22) + m_12_*(m_21*m12 + m_22*m22))*B1; 
 
%Defining the regions of the quantum well------------- 
X = -(50*deltax):deltax:0; 
Y = 0:deltax:L2; 
Z = L2:deltax:L3; 
T = L3:deltax:L3+(50*deltax); 
 
%Defining the unnormalized wavefunctions-------------- 
psi1 = B1*exp(-(i*k1*X)); 
psi2 = A2*exp(i*k2*Y) + B2*exp(-(i*k2*Y)); 
psi3 = A3*exp(i*k3*Z) + B3*exp(-(i*k3*Z)); 
psi4 = A4*exp(i*k4*T); 
 
%Integrating---------------------------------------------- 
psi_1 = conj(psi1); 
psi_2 = conj(psi2); 
psi_3 = conj(psi3); 
psi_4 = conj(psi4); 
% the integral over all space of |psi|^2 == psi*conj(psi) has to be 1 
 
integrand1 = (psi1.*psi_1)*deltax; 
integrand2 = (psi2.*psi_2)*deltax; 
integrand3 = (psi3.*psi_3)*deltax; 
integrand4 = (psi4.*psi_4)*deltax; 
 
integral1 = sum(integrand1); 
integral2 = sum(integrand2); 
integral3 = sum(integrand3); 
integral4 = sum(integrand4); 
 
finali = integral1 + integral2 + integral3 + integral4; 
 
b1 = 1/(sqrt(finali));      %normalization constant 
  
% normalized wavefunctions are just the unnormalized wavefunctions multiplied by the 

normalization constant 
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Psi1 = b1*psi1; 
Psi2 = b1*psi2; 
Psi3 = b1*psi3; 
Psi4 = b1*psi4; 
  
% This part of the program integrates the normalized wavefunction in order to check  
%that it equals 1. 
%This is used to make sure that the program is working... 
      
Psi_1 = conj(Psi1); 
Psi_2 = conj(Psi2); 
Psi_3 = conj(Psi3); 
Psi_4 = conj(Psi4); 
 
Integrand1 = (Psi1.*Psi_1)*deltax; 
Integrand2 = (Psi2.*Psi_2)*deltax; 
Integrand3 = (Psi3.*Psi_3)*deltax; 
Integrand4 = (Psi4.*Psi_4)*deltax; 
 
Integral1 = sum(Integrand1); 
Integral2 = sum(Integrand2); 
Integral3 = sum(Integrand3); 
Integral4 = sum(Integrand4); 
 
finalI = Integral1 + Integral2 + Integral3 + Integral4; 
 
%----------------------------------End of Psi_aqw------------------------------------------ 
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%This program is titled E_InGaAsP 
%Created: February 2002 
%Author: Kevin Lantz 
 
%This program has the same form as aqw_InGaAsP except it uses Airy functions 
 
clc 
F = input('Electric Field in [V/m]:          '); 
 
X1_ = input('Percentage of Al (0-1) in region 1:        ');        
X2_ = input('Percentage of Al (0-1) in region 2:        ');          
X3_ = input('Percentage of Al (0-1) in region 3:        ');         
X4_ = X1_; 
 
width1 = Inf;   %Extends from -Infinity to 0; 
width2 = input('Width of the region 0->a in angstroms:     ');   %Well width 
width3 = input('Width of the region a->b in angstroms:     '); 
width4 = Inf;   %Extends from L to Infinity; 
%----------------------------------------------------------------------------------------------- 
y = 0;      %Initial value of y to correct the logic of the later condition 
a = 1; 
%---------------------------------% 
 
L1 = width1*1e-10;      %Change input of angstroms->meters 
L2 = width2*1e-10; 
L3 = (width2+width3)*1e-10; 
L4 = width4*1e-10; 
 
hbar = 1.055e-34;  %[J*s] 
m0 = 9.11e-31; %[kg] 
e = 1.602e-19; %[C] 
 
%Conditions used to make the program function correctly under positive or negative bias 
if F < 0; 
    z1 = L3; 
    z2 = L2; 
    z3 = 0; 
    X1 = X4_;  
    X2 = X3_;     
    X3 = X2_;  
    X4 = X1_;  
else 
    z1 = 0; 
    z2 = L2; 
    z3 = L3; 
    X1 = X1_;  
    X2 = X2_;     
    X3 = X3_;  
    X4 = X4_;  
end 
%-----------------------------------% 
  
if F < 0  
    eg1 = 1.4236*(1-X1) + 0.81612*X1 - 0.13*(X1*(1-X1));     
    eg3 = 1.519*(1-X2) + 0.417*X2 - 0.477*(X2*(1-X2)); 
    eg2 = 1.4236*(1-X3) + 0.81612*X3 - 0.13*(X3*(1-X3)); 
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    eg4 = 1.4236*(1-X1) + 0.81612*X1 - 0.13*(X1*(1-X1));  
    m_eff1 = 1/((X1/(0.0365*m0)) + ((1-X1)/(0.0795*m0))); 
    m_eff3 = 1/((X2/(0.026*m0)) + ((1-X2)/(0.067*m0))); 
    m_eff2 = 1/((X3/(0.0365*m0)) + ((1-X3)/(0.0795*m0))); 
    m_eff4 = 1/((X1/(0.0365*m0)) + ((1-X1)/(0.0795*m0))); 
 
else 
    eg1 = 1.4236*(1-X1) + 0.81612*X1 - 0.13*(X1*(1-X1));     
    eg2 = 1.519*(1-X2) + 0.417*X2 - 0.477*(X2*(1-X2)); 
    eg3 = 1.4236*(1-X3) + 0.81612*X3 - 0.13*(X3*(1-X3)); 
    eg4 = 1.4236*(1-X1) + 0.81612*X1 - 0.13*(X1*(1-X1));  
    m_eff1 = 1/((X1/(0.0365*m0)) + ((1-X1)/(0.0795*m0))); 
    m_eff2 = 1/((X2/(0.026*m0)) + ((1-X2)/(0.067*m0))); 
    m_eff3 = 1/((X3/(0.0365*m0)) + ((1-X3)/(0.0795*m0))); 
    m_eff4 = 1/((X1/(0.0365*m0)) + ((1-X1)/(0.0795*m0))); 
end 
 
V1 = 0.6*(eg1 - 0.8161193);       
V2 = 0.6*(eg2 - 0.8161193);   %Choose the origin as the bottom left corner of region 2. 
V3 = 0.6*(eg3 - 0.8161193); 
V4 = V1; 
%---------------------------------% 
C1 = (((2*m_eff1*e)/((F*hbar)^2))^(1/3)); 
C2 = (((2*m_eff2*e)/((F*hbar)^2))^(1/3)); 
C3 = (((2*m_eff3*e)/((F*hbar)^2))^(1/3)); 
C4 = (((2*m_eff4*e)/((F*hbar)^2))^(1/3)); 
 
sigma1 = ((m_eff1*C2)/(m_eff2*C1)); 
sigma2 = ((m_eff2*C3)/(m_eff3*C2)); 
sigma3 = ((m_eff3*C4)/(m_eff4*C3)); 
 
%-----------------------------------% 
if F < 0; 
    DD = 0; 
    V2_ = V1; 
else 
    DD = -F*L2; 
    V2_ = V1 - F*L3; 
end 
%-----------------------------------% 
for E =DD:0.001:V2_; 
     
eta1 = (E - V1); 
eta2 = (E - V2); 
eta3 = (E - V3); 
eta4 = (E - V4); 
 
 
Alpha1 = -C1*(F*z1 + eta1); 
Alpha2 = -C2*(F*z1 + eta2); 
Alpha2_ = -C2*(F*z2 + eta2); 
Alpha3 = -C3*(F*z2 + eta3); 
Alpha3_ = -C3*(F*z3 + eta3); 
Alpha4 = -C4*(F*z3 + eta4); 
 
%--------------------------------------% 
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m11 = (pi)*(airy(Alpha2)*airy(3,Alpha1) - sigma1*(airy(2,Alpha1)*airy(1,Alpha2))); 
m12 = (pi)*(airy(2,Alpha2)*airy(3,Alpha1) - sigma1*(airy(2,Alpha1)*airy(3,Alpha2))); 
m21 = (pi)*(sigma1*(airy(Alpha1)*airy(1,Alpha2)) - airy(1,Alpha1)*airy(Alpha2)); 
m22 = (pi)*(sigma1*(airy(Alpha1)*airy(3,Alpha2)) - airy(1,Alpha1)*airy(2,Alpha2)); 
 
m_11 = (pi)*(airy(Alpha3)*airy(3,Alpha2_) - sigma2*(airy(2,Alpha2_)*airy(1,Alpha3))); 
m_12 = (pi)*(airy(2,Alpha3)*airy(3,Alpha2_) - sigma2*(airy(2,Alpha2_)*airy(3,Alpha3))); 
m_21 = (pi)*(sigma2*(airy(Alpha2_)*airy(1,Alpha3)) - airy(1,Alpha2_)*airy(Alpha3)); 
m_22 = (pi)*(sigma2*(airy(Alpha2_)*airy(3,Alpha3)) - airy(1,Alpha2_)*airy(2,Alpha3)); 
 
m_11_ = (pi)*(airy(Alpha4)*airy(3,Alpha3_) - sigma3*(airy(2,Alpha3_)*airy(1,Alpha4))); 
m_12_ = (pi)*(airy(2,Alpha4)*airy(3,Alpha3_) - sigma3*(airy(2,Alpha3_)*airy(3,Alpha4))); 
m_21_ = (pi)*(sigma3*(airy(Alpha3_)*airy(1,Alpha4)) - airy(1,Alpha3_)*airy(Alpha4)); 
m_22_ = (pi)*(sigma3*(airy(Alpha3_)*airy(3,Alpha4)) - airy(1,Alpha3_)*airy(2,Alpha4)); 
 
M1 = [m11,m12;m21,m22]; 
M2 = [m_11,m_12;m_21,m_22]; 
M3 = [m_11_,m_12_;m_21_,m_22_]; 
 
M2M3 = M2*M3; 
M = M1*M2*M3; 
 
M22 = real(M(2,2)); 
 
Epsi_aqw 
 
z = y; 
y = M22; 
 
if z.*y < 0 
    disp(E) 
    Eout(a) = E; 
    a = a + 1; 
    hold on 
     
    plot((X*1e10),((Psi1./(4e5))+E)) 
    plot((Y*1e10),((Psi2./(4e5))+E)) 
    plot((Z*1e10),((Psi3./(4e5))+E)) 
    plot((T*1e10),((Psi4./(4e5))+E)) 
      
     
end 
 
end 
E_valence_InGaAsP 

Ewell2 
 

%--------------------End of E_InGaAsP--------------------------- 
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%This program is titled absorption. 
%Created: February 2002 
%Author: Kevin Lantz 
%This program uses the wavefunctions to find the bound-to-bound and bound-to-continuum 
%absorption spectra. 
 
clc 
aqw_InGaAsP 

 
%--------------Psi at Eout(1)------------ 
 
kE1_1 = sqrt((2*m_eff1*(Eout(1)-V1)*q)/(hbar^2)); 
kE1_2 = sqrt((2*m_eff2*(Eout(1)-V2)*q)/(hbar^2)); 
kE1_3 = sqrt((2*m_eff3*(Eout(1)-V3)*q)/(hbar^2)); 
kE1_4 = sqrt((2*m_eff4*(Eout(1)-V4)*q)/(hbar^2)); 
 
mE1_11 = ((1/2)*((1 + ((kE1_1*m_eff2)/(kE1_2*m_eff1)))*exp(i*(x1*(kE1_1 - kE1_2)))));       
mE1_12 = ((1/2)*((1 - ((kE1_1*m_eff2)/(kE1_2*m_eff1)))*exp(-(i*(x1*(kE1_1 + kE1_2)))))); 
mE1_21 = ((1/2)*((1 - ((kE1_1*m_eff2)/(kE1_2*m_eff1)))*exp(i*(x1*(kE1_1 + kE1_2))))); 
mE1_22 = ((1/2)*((1 + ((kE1_1*m_eff2)/(kE1_2*m_eff1)))*exp(-(i*(x1*(kE1_1 - kE1_2)))))); 
 
m_E1_11 = ((1/2)*((1 + ((kE1_2*m_eff3)/(kE1_3*m_eff2)))*exp(i*(x2*(kE1_2 - kE1_3)))));     
m_E1_12 = ((1/2)*((1 - ((kE1_2*m_eff3)/(kE1_3*m_eff2)))*exp(-(i*(x2*(kE1_2 + kE1_3)))))); 
m_E1_21 = ((1/2)*((1 - ((kE1_2*m_eff3)/(kE1_3*m_eff2)))*exp(i*(x2*(kE1_2 + kE1_3))))); 
m_E1_22 = ((1/2)*((1 + ((kE1_2*m_eff3)/(kE1_3*m_eff2)))*exp(-(i*(x2*(kE1_2 - kE1_3)))))); 
 
m_E1_11_ = ((1/2)*((1 + ((kE1_3*m_eff4)/(kE1_4*m_eff3)))*exp(i*(x3*(kE1_3 - kE1_4)))));   
m_E1_12_ = ((1/2)*((1 - ((kE1_3*m_eff4)/(kE1_4*m_eff3)))*exp(-(i*(x3*(kE1_3 + kE1_4)))))); 
m_E1_21_ = ((1/2)*((1 - ((kE1_3*m_eff4)/(kE1_4*m_eff3)))*exp(i*(x3*(kE1_3 + kE1_4))))); 
m_E1_22_ = ((1/2)*((1 + ((kE1_3*m_eff4)/(kE1_4*m_eff3)))*exp(-(i*(x3*(kE1_3 - kE1_4)))))); 
 
ME1_1 = [mE1_11,mE1_12;mE1_21,mE1_22]; 
ME1_2 = [m_E1_11,m_E1_12;m_E1_21,m_E1_22]; 
ME1_3 = [m_E1_11_,m_E1_12_;m_E1_21_,m_E1_22_]; 
 
M2M1 = ME1_2*ME1_1; 
M3M2M1 = ME1_3*ME1_2*ME1_1; 
 
AE1_1 = 0; 
BE1_1 = 1; 
AE1_2 = ME1_1(1,1)*AE1_1 + ME1_1(1,2)*BE1_1; 
BE1_2 = ME1_1(2,1)*AE1_1 + ME1_1(2,2)*BE1_1; 
AE1_3 = M2M1(1,1)*AE1_1 + M2M1(1,2)*BE1_1; 
BE1_3 = M2M1(2,1)*AE1_1 + M2M1(2,2)*BE1_1; 
AE1_4 = M3M2M1(1,1)*AE1_1 + M3M2M1(1,2)*BE1_1; 
BE1_4 = 0; 
 
deltax = 1e-10; 
 
X = -L3:deltax:0; 
Y = 0:deltax:L2; 
Z = L2:deltax:L3; 
T = L3:deltax:(2*L3); 
 
psiE1_1 = AE1_1*exp(i*kE1_1*X) + BE1_1*exp(-(i*kE1_1*X)); 
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psiE1_2 = AE1_2*exp(i*kE1_2*Y) + BE1_2*exp(-(i*kE1_2*Y)); 
psiE1_3 = AE1_3*exp(i*kE1_3*Z) + BE1_3*exp(-(i*kE1_3*Z)); 
psiE1_4 = AE1_4*exp(i*kE1_4*T) + BE1_4*exp(-(i*kE1_4*T)); 
 
psi_E1_1 = conj(psiE1_1); 
psi_E1_2 = conj(psiE1_2); 
psi_E1_3 = conj(psiE1_3); 
psi_E1_4 = conj(psiE1_4); 
 
deltaIE1_1 = (psi_E1_1.*psiE1_1)*deltax; 
deltaIE1_2 = (psi_E1_2.*psiE1_2)*deltax; 
deltaIE1_3 = (psi_E1_3.*psiE1_3)*deltax; 
deltaIE1_4 = (psi_E1_4.*psiE1_4)*deltax; 
 
IE1_1 = sum(deltaIE1_1); 
IE1_2 = sum(deltaIE1_2); 
IE1_3 = sum(deltaIE1_3); 
IE1_4 = sum(deltaIE1_4); 
 
finalE1 = IE1_1+IE1_2+IE1_3+IE1_4; 
 
bE1 = 1/(sqrt(finalE1)); 
 
PsiE1_1 = bE1*psiE1_1; 
PsiE1_2 = bE1*psiE1_2; 
PsiE1_3 = bE1*psiE1_3; 
PsiE1_4 = bE1*psiE1_4; 
 
%----------------derivative of Psi at Eout(1)------------- 
 
psiEE1_1 = AE1_1*exp(i*kE1_1*X) - BE1_1*exp(-(i*kE1_1*X)); 
psiEE1_2 = AE1_2*exp(i*kE1_2*Y) - BE1_2*exp(-(i*kE1_2*Y)); 
psiEE1_3 = AE1_3*exp(i*kE1_3*Z) - BE1_3*exp(-(i*kE1_3*Z)); 
psiEE1_4 = AE1_4*exp(i*kE1_4*T) - BE1_4*exp(-(i*kE1_4*T)); 
 
PsiEE1_1 = bE1*psiEE1_1; 
PsiEE1_2 = bE1*psiEE1_2; 
PsiEE1_3 = bE1*psiEE1_3; 
PsiEE1_4 = bE1*psiEE1_4; 
 
%------------------Psi at Eout(2)-------------------------- 
 
kE2_1 = sqrt((2*m_eff1*(Eout(2)-V1)*q)/(hbar^2)); 
kE2_2 = sqrt((2*m_eff2*(Eout(2)-V2)*q)/(hbar^2)); 
kE2_3 = sqrt((2*m_eff3*(Eout(2)-V3)*q)/(hbar^2)); 
kE2_4 = sqrt((2*m_eff4*(Eout(2)-V4)*q)/(hbar^2)); 
 
mE2_11 = ((1/2)*((1 + ((kE2_1*m_eff2)/(kE2_2*m_eff1)))*exp(i*(x1*(kE2_1 - kE2_2)))));       
mE2_12 = ((1/2)*((1 - ((kE2_1*m_eff2)/(kE2_2*m_eff1)))*exp(-(i*(x1*(kE2_1 + kE2_2)))))); 
mE2_21 = ((1/2)*((1 - ((kE2_1*m_eff2)/(kE2_2*m_eff1)))*exp(i*(x1*(kE2_1 + kE2_2))))); 
mE2_22 = ((1/2)*((1 + ((kE2_1*m_eff2)/(kE2_2*m_eff1)))*exp(-(i*(x1*(kE2_1 - kE2_2)))))); 
 
m_E2_11 = ((1/2)*((1 + ((kE2_2*m_eff3)/(kE2_3*m_eff2)))*exp(i*(x2*(kE2_2 - kE2_3)))));        
m_E2_12 = ((1/2)*((1 - ((kE2_2*m_eff3)/(kE2_3*m_eff2)))*exp(-(i*(x2*(kE2_2 + kE2_3)))))); 
m_E2_21 = ((1/2)*((1 - ((kE2_2*m_eff3)/(kE2_3*m_eff2)))*exp(i*(x2*(kE2_2 + kE2_3))))); 
m_E2_22 = ((1/2)*((1 + ((kE2_2*m_eff3)/(kE2_3*m_eff2)))*exp(-(i*(x2*(kE2_2 - kE2_3)))))); 
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m_E2_11_ = ((1/2)*((1 + ((kE2_3*m_eff4)/(kE2_4*m_eff3)))*exp(i*(x3*(kE2_3 - kE2_4)))));    
m_E2_12_ = ((1/2)*((1 - ((kE2_3*m_eff4)/(kE2_4*m_eff3)))*exp(-(i*(x3*(kE2_3 + kE2_4)))))); 
m_E2_21_ = ((1/2)*((1 - ((kE2_3*m_eff4)/(kE2_4*m_eff3)))*exp(i*(x3*(kE2_3 + kE2_4))))); 
m_E2_22_ = ((1/2)*((1 + ((kE2_3*m_eff4)/(kE2_4*m_eff3)))*exp(-(i*(x3*(kE2_3 - kE2_4)))))); 
 
ME2_1 = [mE2_11,mE2_12;mE2_21,mE2_22]; 
ME2_2 = [m_E2_11,m_E2_12;m_E2_21,m_E2_22]; 
ME2_3 = [m_E2_11_,m_E2_12_;m_E2_21_,m_E2_22_]; 
 
M2_M1 = ME2_2*ME2_1; 
M3M2_M1 = ME2_3*ME2_2*ME2_1; 
 
AE2_1 = 0; 
BE2_1 = 1; 
AE2_2 = ME2_1(1,1)*AE2_1 + ME2_1(1,2)*BE2_1; 
BE2_2 = ME2_1(2,1)*AE2_1 + ME2_1(2,2)*BE2_1; 
AE2_3 = M2_M1(1,1)*AE2_1 + M2_M1(1,2)*BE2_1; 
BE2_3 = M2_M1(2,1)*AE2_1 + M2_M1(2,2)*BE2_1; 
AE2_4 = M3M2_M1(1,1)*AE2_1 + M3M2_M1(1,2)*BE2_1; 
BE2_4 = 0; 
 
psiE2_1 = AE2_1*exp(i*kE2_1*X) + BE2_1*exp(-(i*kE2_1*X)); 
psiE2_2 = AE2_2*exp(i*kE2_2*Y) + BE2_2*exp(-(i*kE2_2*Y)); 
psiE2_3 = AE2_3*exp(i*kE2_3*Z) + BE2_3*exp(-(i*kE2_3*Z)); 
psiE2_4 = AE2_4*exp(i*kE2_4*T) + BE2_4*exp(-(i*kE2_4*T)); 
 
psi_E2_1 = conj(psiE2_1); 
psi_E2_2 = conj(psiE2_2); 
psi_E2_3 = conj(psiE2_3); 
psi_E2_4 = conj(psiE2_4); 
 
deltaIE2_1 = (psi_E2_1.*psiE2_1)*deltax; 
deltaIE2_2 = (psi_E2_2.*psiE2_2)*deltax; 
deltaIE2_3 = (psi_E2_3.*psiE2_3)*deltax; 
deltaIE2_4 = (psi_E2_4.*psiE2_4)*deltax; 
 
IE2_1 = sum(deltaIE2_1); 
IE2_2 = sum(deltaIE2_2); 
IE2_3 = sum(deltaIE2_3); 
IE2_4 = sum(deltaIE2_4); 
 
finalE2 = IE2_1+IE2_2+IE2_3+IE2_4; 
 
bE2 = 1/(sqrt(finalE2)); 
 
PsiE2_1 = bE2*psiE2_1; 
PsiE2_2 = bE2*psiE2_2; 
PsiE2_3 = bE2*psiE2_3; 
PsiE2_4 = bE2*psiE2_4; 
 
PsiE2_1_ = conj(PsiE2_1); 
PsiE2_2_ = conj(PsiE2_2); 
PsiE2_3_ = conj(PsiE2_3); 
PsiE2_4_ = conj(PsiE2_4); 
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%------------------<Psi(Eout(2))*|k|Psi(Eout(1))>---------- 
 
deltaE12_1 = (PsiE2_1_.*kE1_1.*PsiEE1_1)*deltax; 
deltaE12_2 = (PsiE2_2_.*kE1_2.*PsiEE1_2)*deltax; 
deltaE12_3 = (PsiE2_3_.*kE1_3.*PsiEE1_3)*deltax; 
deltaE12_4 = (PsiE2_4_.*kE1_4.*PsiEE1_4)*deltax; 
 
E12_1 = sum(deltaE12_1); 
E12_2 = sum(deltaE12_2); 
E12_3 = sum(deltaE12_3); 
E12_4 = sum(deltaE12_4); 
 
averageE12 = E12_1+E12_2+E12_3+E12_4; 
 
AverageE12 = averageE12*(conj(averageE12)); 
 
%-------------------Line Shape----------------------------- 
N = 1e24; 
e0 = 8.85e-12;  
c = 3e8; 
n = 3.5; 
Gamma = ((10e-3)*q)/2; 
ap = 1; 
 
for EE = (Eout(1)-0.1):1e-4:(V1-0.001); 
     
g = (Gamma)/((((Eout(2)-Eout(1)-EE)*q)^2)+((Gamma)^2)); 
gmax = (Gamma)/((((0)*q)^2)+((Gamma)^2)); 
C = (N*(q^2)*(hbar^3))/((m_eff1^2)*e0*n*c); 
alphaE12(ap) = (C.*g.*AverageE12)/(EE*q); 
  
ap = ap + 1; 
end 
 
% 
%----------------Psi above the well-------------------------; 
r=1; 
for Energy = (V1+0.0001):0.0001:(V1+.025) 
 
 
kA1 = sqrt((2*m_eff1*(Energy-V1)*q)/(hbar^2)); 
kA2 = sqrt((2*m_eff2*(Energy-V2)*q)/(hbar^2)); 
kA3 = sqrt((2*m_eff3*(Energy-V3)*q)/(hbar^2)); 
kA4 = sqrt((2*m_eff4*(Energy-V4)*q)/(hbar^2)); 
 
mA_11 = ((1/2)*((1 + ((kA1*m_eff2)/(kA2*m_eff1)))*exp(i*(x1*(kA1 - kA2)))));        
mA_12 = ((1/2)*((1 - ((kA1*m_eff2)/(kA2*m_eff1)))*exp(-(i*(x1*(kA1 + kA2)))))); 
mA_21 = ((1/2)*((1 - ((kA1*m_eff2)/(kA2*m_eff1)))*exp(i*(x1*(kA1 + kA2))))); 
mA_22 = ((1/2)*((1 + ((kA1*m_eff2)/(kA2*m_eff1)))*exp(-(i*(x1*(kA1 - kA2)))))); 
 
m_A_11 = ((1/2)*((1 + ((kA2*m_eff3)/(kA3*m_eff2)))*exp(i*(x2*(kA2 - kA3)))));        
m_A_12 = ((1/2)*((1 - ((kA2*m_eff3)/(kA3*m_eff2)))*exp(-(i*(x2*(kA2 + kA3)))))); 
m_A_21 = ((1/2)*((1 - ((kA2*m_eff3)/(kA3*m_eff2)))*exp(i*(x2*(kA2 + kA3))))); 
m_A_22 = ((1/2)*((1 + ((kA2*m_eff3)/(kA3*m_eff2)))*exp(-(i*(x2*(kA2 - kA3)))))); 
 
m_A_11_ = ((1/2)*((1 + ((kA3*m_eff4)/(kA4*m_eff3)))*exp(i*(x3*(kA3 - kA4)))));        
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m_A_12_ = ((1/2)*((1 - ((kA3*m_eff4)/(kA4*m_eff3)))*exp(-(i*(x3*(kA3 + kA4)))))); 
m_A_21_ = ((1/2)*((1 - ((kA3*m_eff4)/(kA4*m_eff3)))*exp(i*(x3*(kA3 + kA4))))); 
m_A_22_ = ((1/2)*((1 + ((kA3*m_eff4)/(kA4*m_eff3)))*exp(-(i*(x3*(kA3 - kA4)))))); 
 
MA_1 = [mA_11,mA_12;mA_21,mA_22]; 
MA_2 = [m_A_11,m_A_12;m_A_21,m_A_22]; 
MA_3 = [m_A_11_,m_A_12_;m_A_21_,m_A_22_]; 
 
M2M1_ = MA_2*MA_1; 
M3M2M1_ = MA_3*MA_2*MA_1; 
 
A1 = 1; 
B1 = ((-M3M2M1_(2,1))/(M3M2M1_(2,2)))*A1; 
A2 = MA_1(1,1)*A1 + MA_1(1,2)*B1; 
B2 = MA_1(2,1)*A1 + MA_1(2,2)*B1; 
A3 = M2M1_(1,1)*A1 + M2M1_(1,2)*B1; 
B3 = M2M1_(2,1)*A1 + M2M1_(2,2)*B1; 
A4 = M3M2M1_(1,1)*A1 + M3M2M1_(1,2)*B1; 
B4 = 0; 
 
PsiA1 = A1*exp(i*kA1*X) + B1*exp(-(i*kA1*X)); 
PsiA2 = A2*exp(i*kA2*Y) + B2*exp(-(i*kA2*Y)); 
PsiA3 = A3*exp(i*kA3*Z) + B3*exp(-(i*kA3*Z)); 
PsiA4 = A4*exp(i*kA4*T) + B4*exp(-(i*kA4*T)); 
 
PsiA1_ = conj(PsiA1); 
PsiA2_ = conj(PsiA2); 
PsiA3_ = conj(PsiA3); 
PsiA4_ = conj(PsiA4); 
 
%------------------<Psi(above well)*|k|Psi(Eout(1))>------------------ 
 
 
deltaEA_1 = (PsiA1_.*kE1_1.*PsiEE1_1)*deltax; 
deltaEA_2 = (PsiA2_.*kE1_2.*PsiEE1_2)*deltax; 
deltaEA_3 = (PsiA3_.*kE1_3.*PsiEE1_3)*deltax; 
deltaEA_4 = (PsiA4_.*kE1_4.*PsiEE1_4)*deltax; 
 
EA_1 = sum(deltaEA_1); 
EA_2 = sum(deltaEA_2); 
EA_3 = sum(deltaEA_3); 
EA_4 = sum(deltaEA_4); 
 
averageEA = EA_1+EA_2+EA_3+EA_4; 
 
AverageEA(r) = averageEA*(conj(averageEA)); 
 
%-------------------Finding the absorption coefficient------------------- 
     
C = (N*(q^2)*(hbar^2))/(2*(m_eff1^2)*e0*n*c); 
 
CC = (((((Energy-V1))*q)^2) + (Gamma^2)); 
 
rho = ((1/CC)^(1/4)); 
 
C_ = (((Energy-Eout(1))*q)^2); 
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A_ = (sqrt((2*m_eff1)/C_))*rho; 
  
alpha(r) = C*A_*AverageEA(r); 
 
r = r + 1; 
end 
 
%-----------------End of absorption---------------------------------- 
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